Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana.

Identifieur interne : 000527 ( Main/Exploration ); précédent : 000526; suivant : 000528

Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana.

Auteurs : Junxiang Liu [République populaire de Chine] ; Lin Gu [République populaire de Chine] ; Yongchang Yu [République populaire de Chine] ; Ping Huang [République populaire de Chine] ; Zhigang Wu [République populaire de Chine] ; Qian Zhang [République populaire de Chine] ; Yongqiang Qian [République populaire de Chine] ; Xianchong Wan [République populaire de Chine] ; Zhenyuan Sun [République populaire de Chine]

Source :

RBID : pubmed:31083779

Descripteurs français

English descriptors

Abstract

It is well known that xylem embolism can be repaired by bark water uptake and that the sugar required for embolism refilling can be provided by corticular photosynthesis. However, the relationship between corticular photosynthesis and embolism repair by bark water uptake is still poorly understood. In this study, the role of corticular photosynthesis in embolism repair was assessed using Salix matsudana branch segments dehydrated to -1.9 MPa (P50 , water potential at 50% loss of conductivity). The results indicated that corticular photosynthesis significantly promoted water uptake and nonstructural carbohydrate (NSC) accumulation in the bark and xylem during soaking, thereby effectively enhancing the refilling of the embolized vessels and the recovery of hydraulic conductivity. Furthermore, the influence of the extent of dehydration on the embolism refilling enhanced by corticular photosynthesis was investigated. The enhanced refilling effects were much higher in the mildly dehydrated (-1.5 MPa) and moderately dehydrated (-1.9 MPa) branch segments than in the severely dehydrated (-2.2 MPa) branch segments. This study provides evidence that corticular photosynthesis plays a crucial role in xylem embolism repair by bark water uptake for mildly and moderately dehydrated branches.

DOI: 10.1111/pce.13578
PubMed: 31083779


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana.</title>
<author>
<name sortKey="Liu, Junxiang" sort="Liu, Junxiang" uniqKey="Liu J" first="Junxiang" last="Liu">Junxiang Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gu, Lin" sort="Gu, Lin" uniqKey="Gu L" first="Lin" last="Gu">Lin Gu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Yongchang" sort="Yu, Yongchang" uniqKey="Yu Y" first="Yongchang" last="Yu">Yongchang Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Ping" sort="Huang, Ping" uniqKey="Huang P" first="Ping" last="Huang">Ping Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Zhigang" sort="Wu, Zhigang" uniqKey="Wu Z" first="Zhigang" last="Wu">Zhigang Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Civil Engineering, Guangzhou University, Guangzhou, 510006</wicri:regionArea>
<wicri:noRegion>510006</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Qian" sort="Zhang, Qian" uniqKey="Zhang Q" first="Qian" last="Zhang">Qian Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qian, Yongqiang" sort="Qian, Yongqiang" uniqKey="Qian Y" first="Yongqiang" last="Qian">Yongqiang Qian</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wan, Xianchong" sort="Wan, Xianchong" uniqKey="Wan X" first="Xianchong" last="Wan">Xianchong Wan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Zhenyuan" sort="Sun, Zhenyuan" uniqKey="Sun Z" first="Zhenyuan" last="Sun">Zhenyuan Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31083779</idno>
<idno type="pmid">31083779</idno>
<idno type="doi">10.1111/pce.13578</idno>
<idno type="wicri:Area/Main/Corpus">000456</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000456</idno>
<idno type="wicri:Area/Main/Curation">000456</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000456</idno>
<idno type="wicri:Area/Main/Exploration">000456</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana.</title>
<author>
<name sortKey="Liu, Junxiang" sort="Liu, Junxiang" uniqKey="Liu J" first="Junxiang" last="Liu">Junxiang Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gu, Lin" sort="Gu, Lin" uniqKey="Gu L" first="Lin" last="Gu">Lin Gu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yu, Yongchang" sort="Yu, Yongchang" uniqKey="Yu Y" first="Yongchang" last="Yu">Yongchang Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Ping" sort="Huang, Ping" uniqKey="Huang P" first="Ping" last="Huang">Ping Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Zhigang" sort="Wu, Zhigang" uniqKey="Wu Z" first="Zhigang" last="Wu">Zhigang Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Civil Engineering, Guangzhou University, Guangzhou, 510006</wicri:regionArea>
<wicri:noRegion>510006</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Qian" sort="Zhang, Qian" uniqKey="Zhang Q" first="Qian" last="Zhang">Qian Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qian, Yongqiang" sort="Qian, Yongqiang" uniqKey="Qian Y" first="Yongqiang" last="Qian">Yongqiang Qian</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wan, Xianchong" sort="Wan, Xianchong" uniqKey="Wan X" first="Xianchong" last="Wan">Xianchong Wan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Zhenyuan" sort="Sun, Zhenyuan" uniqKey="Sun Z" first="Zhenyuan" last="Sun">Zhenyuan Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Dehydration (metabolism)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Bark (metabolism)</term>
<term>Salix (metabolism)</term>
<term>Trees (metabolism)</term>
<term>Water (metabolism)</term>
<term>Xylem (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (métabolisme)</term>
<term>Déshydratation (métabolisme)</term>
<term>Eau (métabolisme)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Salix (métabolisme)</term>
<term>Xylème (physiologie)</term>
<term>Écorce (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Dehydration</term>
<term>Plant Bark</term>
<term>Salix</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arbres</term>
<term>Déshydratation</term>
<term>Eau</term>
<term>Salix</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Métabolisme glucidique</term>
<term>Photosynthèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is well known that xylem embolism can be repaired by bark water uptake and that the sugar required for embolism refilling can be provided by corticular photosynthesis. However, the relationship between corticular photosynthesis and embolism repair by bark water uptake is still poorly understood. In this study, the role of corticular photosynthesis in embolism repair was assessed using Salix matsudana branch segments dehydrated to -1.9 MPa (P
<sub>50</sub>
, water potential at 50% loss of conductivity). The results indicated that corticular photosynthesis significantly promoted water uptake and nonstructural carbohydrate (NSC) accumulation in the bark and xylem during soaking, thereby effectively enhancing the refilling of the embolized vessels and the recovery of hydraulic conductivity. Furthermore, the influence of the extent of dehydration on the embolism refilling enhanced by corticular photosynthesis was investigated. The enhanced refilling effects were much higher in the mildly dehydrated (-1.5 MPa) and moderately dehydrated (-1.9 MPa) branch segments than in the severely dehydrated (-2.2 MPa) branch segments. This study provides evidence that corticular photosynthesis plays a crucial role in xylem embolism repair by bark water uptake for mildly and moderately dehydrated branches.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31083779</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>42</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana.</ArticleTitle>
<Pagination>
<MedlinePgn>2584-2596</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.13578</ELocationID>
<Abstract>
<AbstractText>It is well known that xylem embolism can be repaired by bark water uptake and that the sugar required for embolism refilling can be provided by corticular photosynthesis. However, the relationship between corticular photosynthesis and embolism repair by bark water uptake is still poorly understood. In this study, the role of corticular photosynthesis in embolism repair was assessed using Salix matsudana branch segments dehydrated to -1.9 MPa (P
<sub>50</sub>
, water potential at 50% loss of conductivity). The results indicated that corticular photosynthesis significantly promoted water uptake and nonstructural carbohydrate (NSC) accumulation in the bark and xylem during soaking, thereby effectively enhancing the refilling of the embolized vessels and the recovery of hydraulic conductivity. Furthermore, the influence of the extent of dehydration on the embolism refilling enhanced by corticular photosynthesis was investigated. The enhanced refilling effects were much higher in the mildly dehydrated (-1.5 MPa) and moderately dehydrated (-1.9 MPa) branch segments than in the severely dehydrated (-2.2 MPa) branch segments. This study provides evidence that corticular photosynthesis plays a crucial role in xylem embolism repair by bark water uptake for mildly and moderately dehydrated branches.</AbstractText>
<CopyrightInformation>© 2019 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Junxiang</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0003-4763-0061</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gu</LastName>
<ForeName>Lin</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Yongchang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Ping</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Zhigang</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Qian</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Qian</LastName>
<ForeName>Yongqiang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Xianchong</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Zhenyuan</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003681" MajorTopicYN="N">Dehydration</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024301" MajorTopicYN="N">Plant Bark</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">bark water uptake</Keyword>
<Keyword MajorTopicYN="Y">corticular photosynthesis</Keyword>
<Keyword MajorTopicYN="Y">dehydration</Keyword>
<Keyword MajorTopicYN="Y">embolism repair</Keyword>
<Keyword MajorTopicYN="Y">hydraulic conductivity</Keyword>
<Keyword MajorTopicYN="Y">micro-CT</Keyword>
<Keyword MajorTopicYN="Y">nonstructural carbohydrates</Keyword>
<Keyword MajorTopicYN="Y">refilling</Keyword>
<Keyword MajorTopicYN="Y">xylem transport</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31083779</ArticleId>
<ArticleId IdType="doi">10.1111/pce.13578</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Aschan, G., & Pfanz, H. (2003). Non-foliar photosynthesis-A strategy of additional carbon acquisition. Flora, 198, 81-97. https://doi.org/10.1078/0367-2530-00080</Citation>
</Reference>
<Reference>
<Citation>Bloemen, J., Vergeynst, L. L., Overlaet-Michiels, L., & Steppe, K. (2016). How important is woody tissue photosynthesis in poplar during drought stress? Trees, 30, 63-72. https://doi.org/10.1007/s00468-014-1132-9</Citation>
</Reference>
<Reference>
<Citation>Brodersen, C. R., McElrone, M. J., Choat, B., Matthews, M. A., & Shackel, K. A. (2010). The dynamics of embolism repair in xylem: In vivo visualizations using high-resolution computed tomography. Plant Physiology, 154, 1088-1095. https://doi.org/10.1104/pp.110.162396</Citation>
</Reference>
<Reference>
<Citation>Cernusak, L. A., & Cheesman, A. W. (2015). The benefits of recycling: How photosynthetic bark can increase drought tolerance. New Phytologist, 208, 995-997. https://doi.org/10.1111/nph.13723</Citation>
</Reference>
<Reference>
<Citation>Cochard, H., Delzon, S., & Badel, E. (2015). X-ray microtomography (micro-CT): A reference technology for high-resolution quantification of xylem embolism in trees. Plant, Cell & Environment, 38, 201-206. https://doi.org/10.1111/pce.12391</Citation>
</Reference>
<Reference>
<Citation>Coster, H. G. L., Steudle, E., & Zimmermann, U. (1997). Turgor pressure sensing in plant cell membranes. Plant Physiology, 58, 636-643.</Citation>
</Reference>
<Reference>
<Citation>Damesin, C. (2003). Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: From the seasonal pattern to an estimation over the year. New Phytologist, 158, 465-475. https://doi.org/10.1046/j.1469-8137.2003.00756.x</Citation>
</Reference>
<Reference>
<Citation>De Baerdemaeker, N. J. F., Salomón, R. L., De Roo, L., & Steppe, K. (2017). Sugars from woody tissue photosynthesis reduce xylem vulnerability to cavitation. New Phytologist, 216, 720-727. https://doi.org/10.1111/nph.14787</Citation>
</Reference>
<Reference>
<Citation>De Swaef, T., Hanssens, J., Cornelis, A., & Steppe, K. (2013). Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling. Annals of Botany, 111, 271-282. https://doi.org/10.1093/aob/mcs249</Citation>
</Reference>
<Reference>
<Citation>Earles, J. M., Sperling, O., Silva, L. C. R., Mcelrone, A. J., Brodersen, C. R., North, M. P., & Zwieniecki, M. A. (2016). Bark water uptake promotes localized hydraulic recovery in coastal redwood crown. Plant, Cell & Environment, 39, 320-328.</Citation>
</Reference>
<Reference>
<Citation>Hacke, U. G., & Laur, J. (2016). Xylem refilling-A question of sugar transporters and ph? Plant Cell & Environment, 39, 2347-2349. https://doi.org/10.1111/pce.12784</Citation>
</Reference>
<Reference>
<Citation>Hacke, U. G., & Sperry, J. S. (2010). Limits to xylem refilling under negative pressure in Laurus nobilis and Acer negundo. Plant Cell & Environment, 26, 303-311.</Citation>
</Reference>
<Reference>
<Citation>Hacke, U. G., Stiller, V., Sperry, J. S., Pittermann, J., & McCulloh, K. A. (2001). Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiology, 125, 779-786. https://doi.org/10.1104/pp.125.2.779</Citation>
</Reference>
<Reference>
<Citation>Hartmann, H., Ziegler, W., Kolle, O., & Trumbore, S. (2013). Thirst beats hunger-declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytologist, 200, 340-349. https://doi.org/10.1111/nph.12331</Citation>
</Reference>
<Reference>
<Citation>Huang, P., Wan, X. C., & Lieffers, V. J. (2016). Daytime and nighttime wind differentially affects hydraulic properties and thigmomorphogenic response of poplar saplings. Physiologia Plantarum, 157, 85-94. https://doi.org/10.1111/ppl.12403</Citation>
</Reference>
<Reference>
<Citation>Katz, C., Oren, R., Schulze, E., & Milburn, J. (1989). Uptake of water and solutes through twigs of Picea abies (L.) Karst. Trees, 3, 33-37.</Citation>
</Reference>
<Reference>
<Citation>Knipfer, T., Brodersen, C. R., Zedan, A., Kluepfel, D. A., & Mcelrone, A. J. (2015). Patterns of drought-induced embolism formation and spread in living walnut saplings visualized using X-ray microtomography. Tree Physiology, 35, 744-755. https://doi.org/10.1093/treephys/tpv040</Citation>
</Reference>
<Reference>
<Citation>Knipfer, T., Cuneo, I. F., Brodersen, C. R., & Mcelrone, A. J. (2016). In situ visualization of the dynamics in xylem embolism formation and removal in the absence of root pressure: A study on excised grapevine stems. Plant Physiology, 171, 1024-1036.</Citation>
</Reference>
<Reference>
<Citation>Laur, J., & Hacke, U. G. (2014). Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling. New Phytologist, 203, 388-400. https://doi.org/10.1111/nph.12806</Citation>
</Reference>
<Reference>
<Citation>Liu, J., Gu, L., Yu, Y., Ju, G., & Sun, Z. (2018). Stem photosynthesis of twig and its contribution to new organ development in cutting seedlings of Salix matsudana koidz. Forests, 9, 207. https://doi.org/10.3390/f9040207</Citation>
</Reference>
<Reference>
<Citation>Mayr, S., Schmid, P., Laur, J., Rosner, S., Charra-Vaskou, K., Daemon, B., & Hacke, U. (2014). Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiology, 164, 1731-1740. https://doi.org/10.1104/pp.114.236646</Citation>
</Reference>
<Reference>
<Citation>Mitchell, P. J., O'Grady, A. P., Tissue, D. T., White, D. A., Ottenschlaeger, M. L., & Pinkard, E. A. (2013). Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist, 197, 862-872. https://doi.org/10.1111/nph.12064</Citation>
</Reference>
<Reference>
<Citation>Nardini, A., Lo Gullo, M. A., & Salleo, S. (2011). Refilling embolized xylem conduits: Is it a matter of phloem unloading? Plant Science, 180, 604-611. https://doi.org/10.1016/j.plantsci.2010.12.011</Citation>
</Reference>
<Reference>
<Citation>Nardini, A., Savi, T., Losso, A., Petit, G., Pacile, S., Tromba, G., … Salleo, S. (2016). X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance. New Phytologist, 213, 1068-1076.</Citation>
</Reference>
<Reference>
<Citation>Neufeld, H. S., Grantz, D. A., Meinzer, F. C., Goldstein, G., Crisosto, G. M., & Crisosto, C. (1992). Genotypic variability in vulnerability of leaf xylem to cavitation in water-stressed and well-irrigated sugarcane. Plant Physiology, 100, 1020-1028. https://doi.org/10.1104/pp.100.2.1020</Citation>
</Reference>
<Reference>
<Citation>Nolf, M., Lopez, R., Peters, J. M., Flavel, R. J., Koloadin, L. S., Young, I. M., & Choat, B. (2017). Visualization of xylem embolism by X-ray microtomography: A direct test against hydraulic measurements. New Phytologist, 214, 890-898. https://doi.org/10.1111/nph.14462</Citation>
</Reference>
<Reference>
<Citation>Petruzzellis, F., Pagliarani, C., Savi, T., Losso, A., Cavalletto, S., Tromba, G., … Secchi, F. (2018). The pitfalls of in vivo imaging techniques: Evidence for cellular damage caused by synchrotron X-ray computed micro-tomography. New Phytologist, 220, 104-110. https://doi.org/10.1111/nph.15368</Citation>
</Reference>
<Reference>
<Citation>Pfanz, H. (2008). Bark photosynthesis. Trees, 22, 137-138. https://doi.org/10.1007/s00468-007-0196-1</Citation>
</Reference>
<Reference>
<Citation>Pfanz, H., Aschan, G., Langenfeld-Heyser, R., Wittmann, C., & Loose, M. (2002). Ecology and ecophysiology of tree stems: Corticular and wood photosynthesis. Naturwissenschaften, 89, 147-162. https://doi.org/10.1007/s00114-002-0309-z</Citation>
</Reference>
<Reference>
<Citation>Salleo, S., Lo Gullo, M. A., Trifilo, P., & Nardini, A. (2004). New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant, Cell & Environment, 27, 1065-1076. https://doi.org/10.1111/j.1365-3040.2004.01211.x</Citation>
</Reference>
<Reference>
<Citation>Salleo, S., Trifilo, P., Esposito, S., Nardini, A., & Lo Gullo, M. A. (2009). Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: A component of the signal pathway for embolism repair? Functional Plant Biology, 36, 815-825. https://doi.org/10.1071/FP09103</Citation>
</Reference>
<Reference>
<Citation>Salleo, S., Trifilo, P., & Lo Gullo, M. A. (2008). Vessel wall vibrations: Trigger for embolism repair? Functional Plant Biology, 35, 289-297. https://doi.org/10.1071/FP07239</Citation>
</Reference>
<Reference>
<Citation>Schmitz, N., Egerton, J. J. G., Lovelock, C. E., & Ball, M. C. (2012). Light-dependent maintenance of hydraulic function in mangrove branches: Do xylary chloroplasts play a role in embolism repair? New Phytologist, 195, 40-46. https://doi.org/10.1111/j.1469-8137.2012.04187.x</Citation>
</Reference>
<Reference>
<Citation>Secchi, F., & Zwieniecki, M. A. (2011). Sensing embolism in xylem vessels: The role of sucrose as a trigger for refilling. Plant, Cell & Environment, 34, 514-524. https://doi.org/10.1111/j.1365-3040.2010.02259.x</Citation>
</Reference>
<Reference>
<Citation>Sparks, J. P., Campbell, G. S., & Black, R. A. (2001). Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: A TDR case study. Oecologia, 127, 468-475. https://doi.org/10.1007/s004420000587</Citation>
</Reference>
<Reference>
<Citation>Sperry, J., Nichols, K., Sullivan, J., & Eastlack, S. (1994). Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology, 75, 1736-1752. https://doi.org/10.2307/1939633</Citation>
</Reference>
<Reference>
<Citation>Sperry, J. S., Donnelly, J. R., & Tyree, M. T. (1988). Seasonal occurrence of xylem embolism in sugar maple (Acer saccharum). American Journal of Botany, 75, 1212-1218. https://doi.org/10.1002/j.1537-2197.1988.tb08834.x</Citation>
</Reference>
<Reference>
<Citation>Steudle, E. (2001). The cohesion-tension mechanism and the acquisition of water by plants root. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 847-875. https://doi.org/10.1146/annurev.arplant.52.1.847</Citation>
</Reference>
<Reference>
<Citation>Sun, S., Meng, P., Zhang, J., & Wan, X. (2011). Variation in soil water uptake and its effect on plant water status in Juglans regia L. during dry and wet seasons. Tree Physiology, 31, 1378-1389. https://doi.org/10.1093/treephys/tpr116</Citation>
</Reference>
<Reference>
<Citation>Suuronen, J., Peura, M., Fagerstedt, K. V., & Serimaa, R. (2013). Visualizing water-filled versus embolized status of xylem conduits by desktop X-ray microtomography. Plant Methods, 9, 11. https://doi.org/10.1186/1746-4811-9-11</Citation>
</Reference>
<Reference>
<Citation>Teskey, R. O., Saveyn, A., Steppe, K., & McGuire, M. A. (2008). Origin, fate and significance of CO2 in tree stems. New Phytologist, 177, 17-32. https://doi.org/10.1111/j.1469-8137.2007.02286.x</Citation>
</Reference>
<Reference>
<Citation>Trifilò, P., Raimondo, F., Lo Gullo, M. A., Barbera, P. M., Salleo, S., & Nardini, A. (2014). Relax and refill: Xylem rehydration prior to hydraulic measurements favours embolism repair in stems and generate artificially low PLC values. Plant, Cell & Environment, 37, 2491-2499. https://doi.org/10.1111/pce.12313</Citation>
</Reference>
<Reference>
<Citation>Tyree, M. T., & Sperry, J. S. (1989). Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19-38. https://doi.org/10.1146/annurev.pp.40.060189.000315</Citation>
</Reference>
<Reference>
<Citation>Tyree, M. T., & Zimmermann, M. H. (2002). Xylem structure and the ascent of sap (2nd ed.). Berlin: Springer. https://doi.org/10.1007/978-3-662-04931-0</Citation>
</Reference>
<Reference>
<Citation>Vandegehuchte, M. W., Bloemen, J., Vergeynst, L. L., & Steppe, K. (2015). Woody tissue photosynthesis in trees: Salve on the wounds of drought? New Phytologist, 208, 998-1002. https://doi.org/10.1111/nph.13599</Citation>
</Reference>
<Reference>
<Citation>Wittmann, C., & Pfanz, H. (2008). Antitranspirant functions of stem periderms and their influence on corticular photosynthesis under drought stress. Trees, 22, 187-196. https://doi.org/10.1007/s00468-007-0194-3</Citation>
</Reference>
<Reference>
<Citation>Zwieniecki, M. A., & Holbrook, N. M. (2009). Confronting Maxwell's demon: Biophysics of xylem embolism repair. Trends in Plant Science, 14, 530-534. https://doi.org/10.1016/j.tplants.2009.07.002</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Liu, Junxiang" sort="Liu, Junxiang" uniqKey="Liu J" first="Junxiang" last="Liu">Junxiang Liu</name>
</noRegion>
<name sortKey="Gu, Lin" sort="Gu, Lin" uniqKey="Gu L" first="Lin" last="Gu">Lin Gu</name>
<name sortKey="Huang, Ping" sort="Huang, Ping" uniqKey="Huang P" first="Ping" last="Huang">Ping Huang</name>
<name sortKey="Qian, Yongqiang" sort="Qian, Yongqiang" uniqKey="Qian Y" first="Yongqiang" last="Qian">Yongqiang Qian</name>
<name sortKey="Sun, Zhenyuan" sort="Sun, Zhenyuan" uniqKey="Sun Z" first="Zhenyuan" last="Sun">Zhenyuan Sun</name>
<name sortKey="Wan, Xianchong" sort="Wan, Xianchong" uniqKey="Wan X" first="Xianchong" last="Wan">Xianchong Wan</name>
<name sortKey="Wu, Zhigang" sort="Wu, Zhigang" uniqKey="Wu Z" first="Zhigang" last="Wu">Zhigang Wu</name>
<name sortKey="Yu, Yongchang" sort="Yu, Yongchang" uniqKey="Yu Y" first="Yongchang" last="Yu">Yongchang Yu</name>
<name sortKey="Zhang, Qian" sort="Zhang, Qian" uniqKey="Zhang Q" first="Qian" last="Zhang">Qian Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000527 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000527 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31083779
   |texte=   Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31083779" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020